Abstract

The challenges presented to the lung by the space environment are the effects of prolonged absence of gravity, the challenges of decompression stress associated with spacewalking, and the changes in the deposition of inhaled particulate matter. Although there are substantial changes in the function of the lung in partial gravity, the lung is largely unaffected by sustained exposure, returning rapidly to a normal state after return to 1G. Provided there is adequate denitrogenation prior to a spacewalk, avoiding the development of venous gas emboli, the lung copes well with the low pressure environment of the spacesuit. Particulate deposition is reduced in partial gravity, but where that deposition occurs is likely in the more peripheral airspaces, with associated longer retention times, potentially raising the toxicological potential of toxic dusts. Despite its delicate structure the lung performs well in partial gravity, with the greatest threat likely arising from inhaled particulate matter (extra-terrestrial dusts).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.