Abstract
The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die. In this work, rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears. A three-dimensional (3D) rigid-plastic finite element model was developed on the DEFORM-3D platform. By finite element simulation and analysis, the influences of key parameters on the punch load and cut surface were investigated. It is shown that: 1) with increasing the counterforce or helical angle, the punch load and the depth of die roll increase; 2) with increasing blank holder force, the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality. The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears, and provide valuable guidelines for further experimental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.