Abstract

BackgroundCirculating free fatty acids are often elevated in patients with type 2 diabetes (T2D) and obese individuals. Chronic exposure to high levels of saturated fatty acids has detrimental effects on islet function and insulin secretion. Altered gene expression and epigenetics may contribute to T2D and obesity. However, there is limited information on whether fatty acids alter the genome-wide transcriptome profile in conjunction with DNA methylation patterns in human pancreatic islets. To dissect the molecular mechanisms linking lipotoxicity to impaired insulin secretion, we investigated the effects of a 48 h palmitate treatment in vitro on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets.MethodsGenome-wide mRNA expression was analyzed using Affymetrix GeneChip® Human Gene 1.0 ST whole transcript-based array (n = 13) and genome-wide DNA methylation was analyzed using Infinium HumanMethylation450K BeadChip (n = 13) in human pancreatic islets exposed to palmitate or control media for 48 h. A non-parametric paired Wilcoxon statistical test was used to analyze mRNA expression. Apoptosis was measured using Apo-ONE® Homogeneous Caspase-3/7 Assay (n = 4).ResultsWhile glucose-stimulated insulin secretion was decreased, there was no significant effect on apoptosis in human islets exposed to palmitate. We identified 1,860 differentially expressed genes in palmitate-treated human islets. These include candidate genes for T2D, such as TCF7L2, GLIS3, HNF1B and SLC30A8. Additionally, genes in glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid metabolism, glutathione metabolism and one carbon pool by folate were differentially expressed in palmitate-treated human islets. Palmitate treatment altered the global DNA methylation level and DNA methylation levels of CpG island shelves and shores, 5′UTR, 3′UTR and gene body regions in human islets. Moreover, 290 genes with differential expression had a corresponding change in DNA methylation, for example, TCF7L2 and GLIS3. Importantly, out of the genes differentially expressed due to palmitate treatment in human islets, 67 were also associated with BMI and 37 were differentially expressed in islets from T2D patients.ConclusionOur study demonstrates that palmitate treatment of human pancreatic islets gives rise to epigenetic modifications that together with altered gene expression may contribute to impaired insulin secretion and T2D.

Highlights

  • Circulating free fatty acids are often elevated in patients with type 2 diabetes (T2D) and obese individuals

  • Impaired insulin secretion in human islets exposed to palmitate To investigate the physiological response to 1 mM palmitate treatment for 48 h, we measured glucose-stimulated insulin secretion in human islets cultured under control (5.56 mM glucose) or lipotoxic (5.56 mM glucose and 1 mM palmitate) conditions

  • We found decreased glucosestimulated insulin secretion measured as fold change in the palmitate-treated compared with control-treated human islets (Figure 2a)

Read more

Summary

Introduction

Circulating free fatty acids are often elevated in patients with type 2 diabetes (T2D) and obese individuals. There is limited information on whether fatty acids alter the genome-wide transcriptome profile in conjunction with DNA methylation patterns in human pancreatic islets. To dissect the molecular mechanisms linking lipotoxicity to impaired insulin secretion, we investigated the effects of a 48 h palmitate treatment in vitro on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. While genome-wide association studies (GWAS) have identified more than 60 single nucleotide polymorphisms (SNPs) associated with an increased risk for T2D [1,2], obesity, physical inactivity and ageing represent non-genetic risk factors for the disease. Genome-wide human epigenetic studies linking altered DNA methylation to diabetes remain scarce. Increased DNA methylation of beta-cell specific genes, such as PDX-1 and INS, correlates negatively with the expression of respective genes in pancreatic islets from T2D patients [4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call