Abstract
The utilization of an agricultural waste product known as palm kernel shells (PKS) combined with fine laterites (from basalt in Bangangté, West Cameroon) to produce low-cost and innovative materials with good bearing capacities for road pavement was investigated. Fine laterites from two soil profiles (BL31 and BL32) and made up of kaolinite, hematite, goethite, gibbsite, anatase, ilmenite and magnetite minerals were partially replaced with PKS at 15%, 25%, 35%, and 45% by weight. Physical and mechanical tests, including particle size distribution, Atterberg limits, unsoaked and soaked California Bearing Ratio (UCBR and SCBR), unconfined compressive strength (UCS), and tensile strength (Rt), were performed on the different mixtures. After the addition of PKS, a decrease in fine particle content (77 to 38%), liquidity limit (LL: 72 to 61%), plasticity index (PI: 30 to 19%), maximum dry density (MDD: 1.685 to 1.29 t/m3), and optimum moisture content (OMC: 27.5 to 24.0%) was noticed. Additionally, there was an increase in UCBR (16–72%), SCBR (14–66%), UCS (1.07–7.67 MPa), and Rt (2.24–9.71 MPa). This allows new materials suitable for the construction of base layers for low trafficked roads (T1–T2), as well as sub-base and base layers for high trafficked roads (T3), to be obtained. This newly formed material can be recommended locally for road construction works, though more in-depth studies are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.