Abstract

To investigate the effects of ozone exposure and soil drought, singly and in combination, on gas exchange, antioxidant contents and pigments in current-year needles of Norway spruce [Picea abies (L.) Karst.] 4-year-old seedlings were fumigated in growth chambers with either charcoal-filtered air or with 100 nl l–1 ozone for 106 days. After 3 weeks a 20% reduction in gas exchange was observed in ozone-treated seedlings. However, no further decrease occurred in spite of continued ozone exposure. Whole needle ascorbate and apoplastic ascorbate increased until the end of the experiment and contents were 62% and 82%, respectively, higher than in ozone-free controls. This increase in ascorbate might have protected net photosynthesis from further decline. Ozone pre-treated plants and ozone-free controls were subjected to soil drought for 38 days which caused stomatal narrowing. Thereby ozone uptake was reduced when compared to well watered seedlings. At the end of the experiment drought alone, and even more in combination with ozone, had also caused an increase in ascorbate. Glutathione increased only in drought-stressed seedlings. The redox states of the ascorbate and the glutathione pools were not affected by any treatment. Superoxide dismutase activity declined under both stresses but was most reduced by ozone alone. While chlorophyll and neoxanthin contents remained unchanged, carotenes were significantly decreased upon drought. The combination of O3 and drought induced increased lutein contents, an increased pool size of the xanthophyll cycle as well as an increased epoxidation status of the xanthophyll cycle. These results suggest that spruce needles seem to be able to acclimate to ozone stress but also to drought stress by increasing their ascorbate pools and protecting pigments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.