Abstract

Perovskite oxide sorbents offer promise for adsorption-based separation of air to produce an oxygen enriched stream. The oxygen desorption rate however should be further improved. This work studies the oxygen sorption properties of three La1–xSrxCo1–yFeyO3-δ (LSCF) perovskite oxides with and without oxygen vacancy disorder–order phase transition. The LSCF with lower iron content [La0.1Sr0.9Co0.9Fe0.1O3-δ (LSCF1991)] shows the highest sorption capacity in 500–800 °C. The material with disorder–order phase transition during desorption also exhibits enhanced oxygen desorption rate during the TGA measurement. However, in the fixed-bed desorption process, no obvious rate enhancement resulting from the disorder–order phase transition in oxygen desorption is observed for the LSCF1991 sorbent. The LSCF1991 sample in the fixed-bed quenched at 600 °C after 2 h of desorption shows occurrence of disorder–order phase transition for the perovskite sorbent in the fixed-bed environment. The difference in oxygen desorptio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.