Abstract
Synchrotron radiation-based grazing incidence X-ray diffraction (GI-XRD) technique is employed here to estimate the residual stress of < 10nm thin hafnium oxide film deposited on Si (100) substrate at different argon/oxygen ratios using reactive rf sputtering. A decrease in residual stress, tensile in nature, is observed at higher annealing temperature for the samples deposited with increasing argon ratio in the Ar/O2 plasma. The residual stress of the films deposited at higher pAr (Ar:O2=4:1) is also found to be decreased with increasing annealing temperature. But the stress is more or less constant with annealing temperature for the films deposited at lower Ar/O2 (1:4) ratio. All the above phenomena can be explained on the basis of swelling of the interfacial layer and enhanced structural relaxation in the presence of excess Hf in hafnium oxide film during deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.