Abstract

Fabrication of phase-pure well-crystalline BiFeO3 submicroparticles in large scale is of great importance for the utilization of this rhombohedrally distorted perovskite material in applications such as memory storage and spintronic devices and visible photocatalyst for the degradation of organic pollutants. In fact, because of the narrow temperature range of phase stabilization, the fabrication of phase-pure BiFeO3 in large scale remained elusive. We present the synthesis of phase-pure BiFeO3 particles of submicrometric dimensions (246-330 nm average size) through the adjustment of oxidizing/reducing agent ratio in solution combustion process utilizing glycine as reducing agent and nitrate precursors as oxidizing agent. Utilizing X-ray diffraction and Raman spectroscopy, we demonstrate that the BiFeO3 submicroparticles synthesized at equivalence ratio (Φe) close to 0.5 do not contain undesired impurities such as Bi2Fe4O9 and Bi24Fe2O39. Moreover, the submicroparticles are highly crystalline, possessing high room temperature magnetic moment and stable antiferromagnetic behavior across a wide temperature range. The superparamagnetic behavior at low magnetic field manifested by impurities attached to the BiFeO3 submicroparticles might lead to their use as effective magnetically separable photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.