Abstract
The wild species field cress (Lepidium campestre), belonging to the Brassicaceae family, has potential to be developed into a novel oilseed- and catch crop, however, the species needs to be further improved regarding some important agronomic traits. One of them is its low oil content which needs to be increased. As far as we know there is no study aiming at increasing the oil content that has been reported in this species. In order to investigate the possibility to increase the seed oil content in field cress, we have tried to introduce the Arabidopsis WRINKLED1 (AtWRI1) or hemoglobin (Hb) genes from either Arabidopsis thaliana (AtHb2) or Beta vulgaris (BvHb2) into field cress with the seed specific expression. The hypothesis was that the oil content would be increased by overexpressing these target genes. The results showed that the oil content was indeed increased by up to 29.9, 20.2, and 25.9% in the transgenic lines expressing AtWRI1, AtHb2, and BvHb2, respectively. The seed oil composition of the transgenic lines did not significantly deviate from the seed oil composition of the wild type plants. Our results indicate that genetic modification can be used in this wild species for its fast domestication into a future economically viable oilseed and catch crop.
Highlights
A growing world population, changing climate, and depletion of fossil oils in a near future require sustainable oil sources for a bioeconomy-based society
A few oil crops constitute the greatest part of the world plant oil production, and the possibility to increase the oil content of these crops is limited due to various reasons
The amount of plant oils produced and the variation of oil qualities available today are very limited, mainly due to the limited oil crop species available in commercial production, which are restricted to certain climate conditions
Summary
A growing world population, changing climate, and depletion of fossil oils in a near future require sustainable oil sources for a bioeconomy-based society. Plant oil has become one of the very attractive alternatives to fossil oil in the recent years as it is renewable and can be tailormade for end uses using gene technology. A few oil crops constitute the greatest part of the world plant oil production, and the possibility to increase the oil content of these crops is limited due to various reasons. Rapeseed and oil palm already have high oil content, and the potential for further increasing the seed oil content is rather limited. An increase in the oil content of soybean would be on the expense of the protein content and is not alternative since protein is the most desirable component of the soybean seeds (Carlsson et al, 2011). Developing or domestication of new and high-yielding oil species with oil compositions tailored for end users would be a better choice in this context
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.