Abstract

There exists a positive correlation between the unsaturated fatty acids (UFA) content in the bovine species and their taste and nutritional significance. Long-chain acyl-CoA synthetase 1 (ACSL1) is known to be involved in lipid synthesis as well as fatty acid transport and degradation. This gene has been identified as the key candidate gene for regulating lipid composition in the bovine skeletal muscle; however, its mechanism of action in regulating UFA synthesis in bovine adipocytes is unclear. In this study, we used a recombinant adenovirus vector (Ad-ACSL1) to overexpress the ACSL1 gene using Ad-NC (recombinant adenovirus of green fluorescent protein) as the control. Quantitative real-time PCR (qRT-PCR) was done to examine the gene expression associated with the synthesis of UFA, followed by the analysis of the fatty acid composition. Oil red O staining was done to examine the aggregation of lipid droplets. We found that ACSL1 overexpression was associated with an upregulated expression of PPARγ, FABP3, ACLY, SCD1, and FASN, and downregulated expression of CPT1A. Additionally, ACSL1 overexpression resulted in elevated saturated fatty acid content, especially C16:0 and C18:0, than the control group (Ad-NC cells) (p < 0.05). Furthermore, the overexpression of ACSL1 enhanced the proportion of eicosapentaenoic acid (EPA), decreased the proportion of C22:4, and significantly upregulated polyunsaturated fatty acid (PUFA) content. These results were supported by oil red O staining, which revealed an increase in the lipid droplets in bovine adipocytes after the overexpression of the ACSL1 gene. Thus, the results of this study indicated that ACSL1 positively regulated PUFA synthesis in bovine adipocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call