Abstract
ABSTRACT Opposing-pulse-jet technology has been proposed as a solution for regenerating filtration media by minimizing the incomplete cleaning of pleated filter cartridges. In this study, we investigated the effects of a pleated filter cartridge’s overall length and outer diameter (OD) on the performance of opposing-pulse-jet cleaning via numerical modeling. For each pleated filter cartridge, the delay time, Δt (defined as the delay in launching the secondary nozzle), was varied to analyze the intensity and the uniformity of the static pressure distribution in the core of the cartridge. It was found that two opposing jet flows collided much more intensely in the core when the length of the overall cartridge, L, was short, and the OD was small. For a given L, the pressure pulse’s performance was maximized by varying Δt. The pulse intensity and uniformity in the filter core can be represented as a bimodal (double-peaked) function of Δt. In general, the pulse intensity was greater when Δt > 0 s than when Δt < 0 s (when the secondary jet was launched before the primary jet).
Highlights
Dust collectors have been applied in various industrial settings for the control of particulate emission over the decades in order to meet the gradually more stringent dust emission regulation
Opposing-pulse-jet technology has been proposed as a solution for regenerating filtration media by minimizing the incomplete cleaning of pleated filter cartridges
We investigated the effects of a pleated filter cartridge’s overall length and outer diameter (OD) on the performance of opposing-pulse-jet cleaning via numerical modeling
Summary
Dust collectors have been applied in various industrial settings for the control of particulate emission over the decades in order to meet the gradually more stringent dust emission regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.