Abstract
Thermo-mechanical processing of type 304 and type 316L stainless steels done by (a) cold rolling to a reduction in thickness of 20 to 80 percent and (b) solution annealing to obtain a medium size of grains led to a considerable improvement in resistance to both sensitization and intergranular corrosion. The nature of the resultant grain boundaries was examined in a scanning electron microscope using orientation imaging microscopy in electron back scattered diffraction mode. Fraction of random and special grain boundaries were established for each set of thermo-mechanical processing. After appropriate sensitization treatments, the degrees of sensitization of these stainless steels were evaluated by double loop electrochemical potentiokinetic reactivation tests. Standard ASTM tests were used to evaluate susceptibility to intergranular corrosion (IGC) and intergranular stress corrosion cracking (IGSCC). These studies showed that a particular combination of thermomechanical processing led to formation of over 75 percent random grain boundaries in the steels and this imparted resistance to sensitization and to IGC and IGSCC. This opens a new concept in grain boundary (GB) engineering of a high fraction of random GB increasing the resistance to localized corrosion like IGC and IGSCC. Textural studies were carried out with the help of X-ray and MTM-FHM software. It showed significant change of texture in type 304 stainless steel, while no change in the texture of type 316L stainless steel after cold rolling and annealing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.