Abstract

The effects of ouabain (10(-7) to 10(-5) M) on the interrelationship between cell-cell contacts, resting tension, and creatine phosphokinase (CK) leakage owing to myocardial cell injury during Ca2+ paradox were studied in isolated perfused rat heart preparations. After perfusing for 15 min with Ca2+ -containing medium, hearts were perfused for 5 min with Ca2+ -free medium followed by a reperfusion with Ca2+ -containing medium for 5 min. This resulted in a transient increase in resting tension and a substantial release of CK into the perfusate during the calcium reperfusion period. These changes were accompanied by extensive structural damage in the myocardial cell, including formation of contraction bands, swelling of the mitochondria, and cell-cell separation. Inclusion of 10(-5) M ouabain for 5 min in the Ca2+ -containing perfusion medium prior to the start of Ca2+ -free perfusion resulted in a higher and sustained resting tension that was accompanied by a reduced loss of CK from the heart during Ca2+ reperfusion. In a histological examination of these ouabain exposed hearts, most of the structural changes owing to calcium paradox were apparent, but the cell-cell contacts were maintained. The results are consistent with the hypothesis that the loss of cell-cell contacts in the intercalated disc during the occurrence of Ca2+ paradox may be the cause of the delayed decline in the resting tension and is only partially responsible for the loss of CK. These differences in myocardial changes during Ca2+ paradox with or without ouabain may be due to the retention of calcium at certain crucial sites under the influence of ouabain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call