Abstract

The orientation dependence of the shape memory responses of [001], [011] and [111]-oriented Ni51Ti49 single crystals and Ni50.8Ti49.2 polycrystals are systematically studied in compression. Thermal cycling under constant stress and superelasticity experiments were conducted on both homogenized and aged (1.5h at 500°C) samples to understand the effects of precipitation on their shape memory behavior. It has been found that recoverable strain, temperature and stress hysteresis, Classius-Clapeyron slopes, and critical stress for plastic deformation are highly orientation dependent. The recoverable strains were 3, 2.65 and 2.38% under 400MPa in [001], [011] and [111] orientations, respectively. After aging, the recoverable strains were 3.19, 2.78 and 2.11% under 400MPa in [001], [011] and [111] orientations, respectively. Above 400MPa, irrecoverable strain increased considerably for [011] and [111]-oriented samples. In [001] orientation, very narrow temperature hysteresis of 10°C, recoverable strain of 3.03% and total strain of 3.65% were observed under ultra high compressive stress level of 1500MPa. Moreover, [001] orientation showed perfect superelasticity with total strain of 7% and a large superelastic window (∆T=140°C). The transformation temperatures are lower in homogenized samples than the aged samples due to decreased Ni-concentration in matrix by the formation of Ni-rich precipitates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.