Abstract

The effects of p-chloromercuribenzoic acid and chloromercuribenzene-p-sulphonic acid on pancreatic islets were studied in vitro. Obese-hyperglycaemic mice were used as the source of microdissected islets containing more than 90% beta-cells. p-Chloromercuribenzoic acid and chloromercuribenzene-p-sulphonic acid stimulated insulin release at concentrations of 0.01mm or above. This stimulation was significantly inhibited by the omission of Ca(2+) or the addition of adrenaline, diazoxide or 2,4-dinitrophenol. p-Chloromercuribenzoic acid or chloromercuribenzene-p-sulphonic acid did not interfere with the insulin-releasing ability of glucose. Micro-perifusion experiments revealed that the release of insulin in response to organic mercurial occurred almost instantaneously, was reversible, and was biphasic. The two mercurials inhibited glucose transport as well as glucose oxidation, and increased the mannitol and sucrose spaces of isolated islets. Compared with the effects on insulin release, those on glucose transport and membrane permeability were characterized by a longer latency and/or required higher concentrations of organic mercurial. Apart from a seemingly higher proportion of beta-cells exhibiting certain degenerative features, in islets exposed to 0.1mm-chloromercuribenzene-p-sulphonic acid for 60min, no significant differences with respect to beta-cell fine structure were noted between non-incubated islets and islets incubated with chloromercuribenzene-p-sulphonic acid or glucose or both. It is suggested that insulin release may be regulated by relatively superficial thiol groups in the beta-cell plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.