Abstract

Tin-doped Indium oxide (ITO) thin films were prepared by sol-gel dip-coating technique using low-cost metal salts and organic solvents. The coated films were treated without annealing or annealed at 400°C and 600°C in 3% H2/97% N2mixtures atmosphere. Microstructure, optical, and electrical properties of the prepared ITO films were investigated in detail. The maximum transmittance in the visible range (380–780 nm) is 85.6%, and the best resistivity is5×10−2 Ω-cm when annealed at 600°C in 3% H2/97% N2mixtures atmosphere. It is found that the optical and electrical properties of the prepared ITO films are strongly related to the microstructure variation. The organic compounds could not be removed completely, and the prepared ITO thin films were not dense when the prepared ITO film was annealed at 600°C in 3% H2/97% N2mixtures atmosphere, causing the poor conductivity.

Highlights

  • Tin-doped Indium oxide (ITO) thin films have been widely applied in touch panel contacts, electrodes for LCD and electrochromic displays, gas sensors, heat-reflecting coatings to increase light bulb efficiency, antistatic window coatings, energy conserving architectural windows and so on [1,2,3,4]

  • The ITO thin films were prepared by sol-gel dip-coating technique using low-cost metal salts and organic solvents

  • The effects of postannealing temperature in 3% H2/97% N2 mixtures atmosphere on morphology, structure, and electrical properties of the ITO thin films are investigated to verify the relationship between the process condition and the properties of the prepared films

Read more

Summary

Introduction

Tin-doped Indium oxide (ITO) thin films have been widely applied in touch panel contacts, electrodes for LCD and electrochromic displays, gas sensors, heat-reflecting coatings to increase light bulb efficiency, antistatic window coatings, energy conserving architectural windows and so on [1,2,3,4]. A variety of fabricating methods have been employed to prepare the ITO thin films, such as sputtering [5], chemical vapor deposition [6], and sol-gel process [7]. Process conditions affect the densification and crystallization of the ITO films prepared by the sol-gel technique. The ITO films prepared by sol-gel technique exhibit a relatively low conductivity resulting from considerable porosity even after films with postannealed at a high temperature and the difficulty to obtain metal alkoxides as raw materials for their unavailability and high price [8,9,10]. The ITO thin films were prepared by sol-gel dip-coating technique using low-cost metal salts and organic solvents. It is found that the optical and electrical properties of the prepared ITO films are strongly related to the microstructure variation, especially resulted from the organic compounds of the precursors

Experimental
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call