Abstract

The halide perovskite solar cells employing CH3NH3PbX3 (X=Cl-, Br-, I-) and CH3NH3PbI3-xClx as light absorbers each have shown a rapid rise in power conversion efficiency (PCE) from 3.8% to 22.1% in recent years. The excellent photovoltaic performance is attributed to good optical and electrical properties such as appropriate bandgap, large absorption coefficient, high carrier mobility, long carrier lifetime and long carrier diffusion length. However, the physical mechanism of high PCE for halide perovskite solar cells is still unclear. The Gaussian 09 software is utilized to optimize the geometries of isolated CH3NH3+ and CH3NH3 at a B3 LYP/6-311++G(d, p) level, and the Multiwfn software is used to visualize the electrostatic potentials (ESPs) of CH3NH3+ and CH3NH3. Based on the ESPs of CH3NH3+ and CH3NH3, it is found that the CH3NH3+ has a strong electrophilic character, however, the NH3- side and CH3- side of CH3NH3 have weak nucleophilic and electrophilic character, respectively. So the electrostatic characteristics of CH3NH3+ and CH3NH3 are significantly different. The strong electrostatic repulsive interaction between two neighboring CH3NH3+ radicals plays an important role in structural phase transition of CH3NH3PbI3 material. At room temperature, the CH3NH3+ in the inorganic cage is activated and disordered, and has a strong electrophilic character. Due to these characteristics of CH3NH3+, the interfacial electrons at TiO2/CH3NH3PbI3 heterojunction are combined with CH3NH3+ to form CH3NH3 in the inorganic[PbI3]- framework. The CH3NH3 at the heterojunction under the built-in electric field is more easily oriented than CH3NH3+. Two initial geometrical configurations for CH3NH3+:CH3NH3 and CH3NH3:CH3NH3 dimers are optimized by using Gaussian 09 at an MP2/Aug-cc-PVTZ level. On the basis of the electrostatic characteristic of CH3NH3+:CH3NH3 dimer, the interfacial electrons at TiO2/CH3NH3PbI3 heterojunction are easily injected into the CH3NH3PbI3 material, which leads to the strong polarization of CH3NH3PbI3 material at the heterojunction. From the ESP of optimized CH3NH3:CH3NH3 dimer, it is found that the weak electrostatic field of the inorganic framework, parallel to C-N axis, is induced by the CH3NH3 orientational order, which is made for improving the photogenerated electron-hole pair separation and carrier transport. The TiO2/CH3NH3PbI3 heterojunction has more advantage than traditional p-n junction because of no consumption of carrier for CH3NH3PbI3 material in the process of forming built-in electric field. The physical mechanism is the origin of high PCE for CH3NH3PbI3 solar cells. According to the experimental results and first-principle calculations, we can draw an important conclusion that the electrostatic characteristics of organic CH3NH3+ cations in the inorganic[PbI3]- framework result in the high performances of halide perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.