Abstract

The effects of organic absorbent on the refractive index and photoluminescence of porous silicon microcavities were theoretically investigated by using the Bruggeman effective medium approximation. Experimentally, porous silicon microcavities were fabricated by computer controlled electrochemical etching, and then interacted with the molecules of oil vapor from a rotary pump. We found that the narrow photoluminescence spectra of porous silicon microcavities were sensitive to the adsorption and de-adsorption of the oil vapor molecules, which leads to a 71nm red-shift and the intensity variation in photoluminescence spectrum. The experimental results are qualitatively consistent with the theoretical estimate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.