Abstract

Verticality perception as assessed by the subjective visual vertical (SVV) is significantly biased by a rotating optokinetic stimulus. The underlying mechanisms of this effect remain open. Potentially, the optokinetic stimulus induces a shift of the internal estimate of the direction of gravity. This hypothesis predicts a shift of perceived vertical using other, non-vision dependent, paradigms as well. Alternatively, an optokinetic stimulus may only induce a shift of visual orientation, and so would be task specific. To test this prediction, both vision-dependent SVV and vision-independent [subjective haptic vertical (SHV)] paradigms were applied. In 12 healthy human subjects, perceived vertical was measured in different whole-body roll positions (up to ±120°, steps = 30°) while watching a clockwise or counterclockwise rotating optokinetic stimulus. For comparison, baseline trials were collected in darkness. A generalized linear model was applied for statistical analysis. A significant main effect for optokinetic stimulation was noted both for the SVV paradigm (p < 0.001) and the SHV paradigm (p = 0.013). However, while pairwise comparisons demonstrated significant optokinetic-induced shifts (p ≤ 0.035) compared to baseline in all roll-tilted orientations except 30° and 60° left-ear-down position and counterclockwise optokinetic stimulation for the SVV paradigm, significant shifts were found in only 1 of the 18 test conditions (120° left-ear-down roll orientation, counterclockwise optokinetic stimulation) for the SHV paradigm. Compared to the SHV, the SVV showed significantly (p < 0.001) larger shifts of perceived vertical when presenting a clockwise (15.3 ± 16.0° vs. 1.1 ± 5.2°, mean ± 1 SD) or counterclockwise (-12.6 ± 7.7° vs. -2.6 ± 5.4°) rotating optokinetic stimulus. Comparing the effect of optokinetic stimulation on verticality perception in both vision-dependent and vision-independent paradigms, we demonstrated distinct patterns. While significant large and roll-angle dependent shifts were noted for the SVV, offsets were minor and reached significance only in one test condition for the SHV. These results suggest that optokinetic stimulation predominately affects vision-related mechanisms, possibly due to induced torsional eye displacements, and that any shifts of the internal estimate of the direction of gravity are relatively minor.

Highlights

  • Verticality perception as assessed by the subjective visual vertical (SVV) is significantly biased by a rotating optokinetic stimulus

  • While significant large and roll-angle dependent shifts were noted for the SVV, offsets were minor and reached significance only in one test condition for the subjective haptic vertical (SHV)

  • If circular vection contributes to shifts in estimating earth vertical, it should have an impact on verticality estimates independently from the paradigm (SVV or SHV) provided that optokinetic stimulation lasts at least 9 s, which is the average time after onset of an optokinetic stimulus that was needed to perceive circular vection as shown in a study by Thilo and Gresty [35]

Read more

Summary

Introduction

Verticality perception as assessed by the subjective visual vertical (SVV) is significantly biased by a rotating optokinetic stimulus. Accurate and precise internal estimates of the direction of gravity are essential for spatial orientation, navigation, and postural stability This is achieved by integrating input from various sensory systems, including the vestibular organs (i.e., the semicircular canals and the otolith organs), vision, and proprioception [1]. Simulations using a Bayesian optimal observer model suggested that this roll-angle-dependent modulation of subjective visual vertical (SVV) precision is both due to the electromechanical properties of the otolith sensors (i.e., their non-uniform distribution of preferred stimulation directions and their non-linear firing rate) and central computation mechanisms that are not optimally tuned for roll-angles distant from upright [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.