Abstract

The aims of the present study were to examine the effects of opioid receptor agonists and antagonists on the renal vascular (renal blood flow) and tubular (urinary sodium excretion) responses to renal nerve stimulation and norepinephrine in anesthetized spontaneously hypertensive rats (SHR). Graded frequency renal nerve stimulation (0.5-4.0 Hz) and doses of norepinephrine (10-80 ng/kg) produced frequency and dose-dependent decreases in renal blood flow. The renal vasoconstrictor responses were not altered by intravenous infusion of the opioid receptor agonists methionine enkephalin (mu and delta, 75 micrograms/kg/min) or U-50488H (kappa, 20 micrograms/kg/min) or administration of the opioid receptor antagonist naloxone (1 mg/kg i.v.). The antinatriuretic response to low frequency (less than 1.0 Hz) electrical renal nerve stimulation was prevented by naloxone but not affected by methionine enkephalin administration without changes in glomerular filtration rate or effective renal plasma flow. These studies suggest that endogenous opioid receptor mechanisms are involved in the increased renal tubular sodium reabsorption response to low frequency renal nerve stimulation but not in the renal vasoconstrictor response to either renal nerve stimulation or norepinephrine. This might occur by facilitation of the renal nerve terminal release, the direct renal tubular action, or both, of norepinephrine to influence renal tubular sodium reabsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.