Abstract

For predicting the biomechanical effects of the fusion procedure, finite element (FE) analysis is widely used as a preclinical tool. Although several FE studies examined the efficacies of various fusion surgical techniques, comparative studies on Open and minimally invasive (MIS) transforaminal lumbar interbody fusion (TLIF) procedures incorporating a follower coordinate system have not been investigated yet. The current FE study evaluates the ranges of motion (ROM) and load distributions of Open-TLIF and MIS-TLIF implanted models, under physiological loading such as compression, flexion, extension and lateral bending. The most noteworthy finding from the investigation is that both the fusion procedures significantly reduced the ROMs of the implanted segment (L3-L4) and full model (L1-L5) by at least 89 % and 44 %, respectively, compared to the intact model. For all loading situations, over 95 % of the implanted models' cancellous bone volume was subjected to von Mises strains ranging from 0.0003 to 0.005. The maximum von Mises strain was observed to be localized on a small amount of cancellous bone volume (<5 %). The likelihood of adjacent segment degeneration is higher in the case of MIS-TLIF due to the higher stress (22–53 MPa) and strain (0.018–0.087) noticed on the upper facet of the L3 vertebra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call