Abstract
Connected vehicle technology has potentials to increase traffic safety, reduce traffic pollution, and ease traffic congestion. In the connected vehicle environment, the information interaction among people, cars, roads, and the environment is significantly enhanced, and driver behavior will change accordingly due to increased external stimulation. This paper designed a Vehicle-to-Vehicle (V2V) on-board unit (OBU) based on driving demand. In addition, a simulation platform for the interconnection and communication between the OBU and simulator was built. Thirty-one test drivers were investigated to drive an instrumented vehicle in four scenarios, with and without the OBU under two different traffic states. Collected trajectory data of the subject vehicle and the vehicle in front, as well as sociodemographic characteristics of the test drivers were used to evaluate the potential impact of such OBUs on driving behavior and traffic safety. Car-following behavior is an essential component of microsimulation models. This paper also investigated the impacts of the V2V OBU on car-following behaviors. Considering the car-following related indicators, the k-Means algorithm was used to categorize different car-following modes. The results show that the OBU has a positive impact on drivers in terms of speed, front distance, and the time to stable regime. Furthermore, drivers’ opinions show that the system is acceptable and useful in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.