Abstract

The overall objective of this research was to determine the effects of oxidative coupling (oligomerization) phenomenon on the adsorption kinetics of dissolved natural organic matter (DOM) on novel tailored activated carbons. A comparison of adsorption kinetics data collected in the presence and absence of phenolic compounds under both oxic (presence of molecular oxygen) and anoxic (absence of molecular oxygen) conditions showed that the adsorption rate of DOM was strongly affected by the oligomerization phenomenon. The diffusion rate of DOM is in inverse proportion to the critical oxidation potential of the phenolic compound. In addition, the roles of carbon physicochemical characteristics and DOM molecular weight distribution were also investigated. Tailored activated carbon impregnated with manganese oxide was found to play an important role in promoting complexation reactions between DOM and phenolic compounds. Meanwhile, Fulvic acid molecules (component of DOM) with molecular weight below 2000Da appeared to have more potential to get influenced from oligomerization effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.