Abstract
The authors determine electronic properties, structural stability, and dielectric response of zirconia (ZrO2) with oxygen vacancies (O vacancies) and carbon doping (C doping) using first-principles density functional theory calculations based on pseudopotentials and a plane wave basis. They find significantly enhanced static dielectric response in zirconia with oxygen vacancies arising from a softened phonon mode. They also find that effects of carbon doping on the dielectric response are anisotropic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.