Abstract

Abstract Female Caloptilia fraxinella exhibit a prolonged reproductive diapause immediately post adult emergence in mid‐summer until the next spring when mating, egg development and oviposition on fresh Fraxinus spp. leaflets occur. Factors that effect the termination of reproductive diapause are investigated in this species. Caloptilia fraxinella diapausing adults held in overwintering conditions (2 °C, LD 0 : 24 h) for 24 weeks terminate diapause after placement for 2 weeks in simulated summer conditions (24 °C, LD 16 : 8 h) only if they are provided with 10% sugar water. Exogenous application of the Juvenile Hormone (JH) analogue methoprene to moths in both early‐ (summer) and mid‐ (autumn) reproductive diapause demonstrates that JH affects diapause termination but a carbohydrate nutrition source also mediates mating and vitellogenesis. Mating between moth pairs early in diapause occurs only after treatment with methoprene and provision with sugar water. However, there is no impact of mating on the propensity of females to produce vitellogenic oöcytes. Moths collected in the autumn in mid‐diapause respond in a dose‐dependent fashion to methoprene treatment and the response is greater than that of moths early in diapause collected in the summer. Treatment with methoprene and access to sugar water results in vitellogenic oöcytes in 18.75% of females from mid‐diapause moth pairs treated with 0.01 μg methoprene per insect and in all females from pairs treated at the two highest doses of methoprene (0.1 and 1 μg per insect). Mating occurs only between moths in mid‐diapause treated with the two highest doses of methoprene and these doses induce 91% and 100% mating, respectively. Both control and methoprene‐treated males in mid‐diapause held under summer conditions mate successfully and pass a spermatophore to their methoprene‐treated female partner. These data demonstrate that female C. fraxinella undergo a prolonged reproductive diapause in which termination is dependent on JH and further mediated by a carbohydrate nutrition source. The production of vitellogenic oöcytes is independent of mating. These data also provide evidence that response of moths in diapause to exogenous applications of methoprene differs throughout the diapause period and between male and female C. fraxinella.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call