Abstract
We examined the effect of nutrient addition on rates of decomposition, ergosterol concentrations (as a measure of fungal biomass), and rates of fungal sporulation associated with yellow poplar (Liriodendron tulipifera L.) leaf disks in 3 streams that differed in water chemistry. We carried out these studies in flow-through channels that received additions of KH2PO4, NaNO3, both nutrients, or controls with no additions. When limiting nutrients were added to the water in all 3 streams, leaf-decaying fungi responded and decomposition rates increased. Two streams, Walker Branch and Payne Creek, contained low concentrations of both inorganic N (<40 μg/L) and P (<16 μg/L). In these streams, rates of leaf decomposition, concentrations of fungal biomass, and rates of sporulation were stimulated only when N and P were added together, indicating that these nutrients potentially colimited fungal activity. The other stream, Little Schultz Creek, contained low concentrations of P (<5 μg/L), but higher concentrations of N (65–200 μg/L) than Walker Branch and Payne Creek. Rates of leaf decomposition, fungal biomass, and sporulation were stimulated by P addition and when both nutrients were added together, indicating potential limition of fungal activity by P in this stream. Results from all 3 streams provide direct experimental evidence that leaf-decaying fungi can use nutrients dissolved in stream water and that, in some streams, rates of leaf decomposition are stimulated by the addition of these nutrients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the North American Benthological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.