Abstract

An in-situ mesocosm experiment was conducted to study the growth dynamic of Chrysosporum ovalisporum and the other phytoplankton organisms under accelerated eutrophication conditions by using 39 buckets (100 L) in Lake Dishui, Shanghai. The results showed that the growth of both filamentous cyanobacteria (C. ovalisporum) and green algae were promoted with nutrient enrichment. The increase in the algal biomass rate in N plus P addition treatments was significantly higher than in treatments with N or P alone (P<0.05). Although the increasing biomass rate with P addition alone was higher than with N alone, there was no statistically significant difference (P>0.05). The relevant abundance of C. ovalisporum showed a significantly decreasing trend with N addition treatments and N plus P additions treatments (P<0.05), although it was slightly increased with the treatments with P alone (P>0.05). Nutrient addition could significantly improve the growth of small sized algae organisms (Chroococcus spp., Coelastrum spp., Chlorella spp., Tetraedron spp., and Scenedesmus spp.) rather than C. ovalisporum in all treatments (P<0.05). The small sized green algae overcoming C. ovalisporum indicated that small sized algae were more favored by hyper-eutrophicated, high water temperature and relatively undisturbed conditions. This is because small sized algal organisms have higher metabolic and growth rates compared to other sized algae, especially in stationary water regimens and high, light density conditions. We foresee that the small sized algae, Chlorophyte, dominating the small hyper-eutrophic aquatic system may be a potential succession pattern in the high water temperature seasons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.