Abstract

The seismic analysis of reactor assembly housing the primary circuit of a typical 500 MWe capacity pool type fast breeder reactor (PFBR) is reported. The reactor assembly is supported on the reactor vault within the nuclear island connected buildings (NICB). The seismic responses, viz. critical displacements, sloshing heights, stresses and strain energy values in the vessels are determined for the reactor assembly by detailed finite element analysis including the fluid–structure interaction and sloshing effects. Analysis is carried out to quantify the effects of inter-connection of the reactor vault with the adjacent buildings under the assumptions that the reactor vault along with reactor assembly is: (1) an isolated structural system from the adjacent buildings within reactor containment building (RCB) and (2) connected with the adjacent civil structures through floor slabs. Analysis indicates that, by inter-connecting the vault with the NICB, there are overall increases of all the governing parameters which decide the seismic design criteria. The significant effects are increases of: (1) radial and axial displacements of core top and absorber rods and vertical accelerations of core subassemblies which are of concern to reactor safety, (2) primary membrane stress intensities for the inner vessel and (3) strain energies developed at the critical portions which can enhance the buckling risks of main vessel, inner vessel and thermal baffles. Hence, it is preferable to isolate the reactor vault, directly constructing from the base raft without inter-connecting it with the NICB, from the seismic loading considerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call