Abstract

Aromatase inhibitors are proving to be more effective than tamoxifen for postmenopausal estrogen receptor (ER)-positive breast cancer. However, the inevitable development of resistance to treatment is a concern. We investigated the effects of novel retinoic acid metabolism blocking agent, VN/14-1, in overcoming letrozole resistance in long-term letrozole cultured (LTLC) cells. Compared with MCF-7 cells stably transfected with aromatase (MCF-7Ca), LTLC cells were no longer sensitive to growth inhibition by aromatase inhibitors. The HER-2/phosphorylated mitogen-activated protein kinase (pMAPK) growth factor signaling pathways were activated, and ERalpha and coactivator amplified in breast cancer 1 (AIB1) were up-regulated approximately 3-fold in LTLC cells. VN/14-1 inhibited aromatase activity and growth values of in MCF-7Ca cells with IC(50) of 8.5 and 10.5 nmol/L, respectively. In human placental microsomes, aromatase activity was inhibited with IC(50) of 8.0 pmol/L. The IC(50) in LTLC cells was 0.83 nmol/L, similar to letrozole (IC(50), 0.3 nmol/L) in MCF-7Ca cells. LTLC cells were 10-fold more sensitive to growth inhibition by VN/14-1 than MCF-7Ca cells. VN/14-1 treatment effectively down-regulated ERalpha, AIB1, pMAPK, HER-2, cyclin D1, cyclin-dependent kinase 4 (CDK4), and Bcl2 and up-regulated cytokeratins 8/18, Bad, and Bax. Tumor growth of LTLC cells in ovariectomized nude mice was independent of estrogens but was inhibited by VN/14-1 (20 mg/kg/d; P < 0.002). Decreases in ERalpha, cyclin D1, CDK4, and pMAPK and up-regulation of cytokeratins, Bad, and Bax with VN/14-1 in tumor samples may be responsible for the efficacy of this compound in inhibiting LTLC cell growth in vitro and in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call