Abstract

The expansion effects of several new microimplant-assisted rapid palatal expanders (MARPEs) manufactured by 3-dimensional printing technology were evaluated by finite element analysis (FEA). The aim was to identify a novel MARPE suitable for treating maxillary transverse deficiency. The finite element model was established using MIMICS software (version 19.0; Materialise, Leuven, Belgium). First, the appropriate microimplant insertion characteristics were identified via FEA, and several MARPEs with the above insertion patterns were manufactured by 3-dimensional printing technology. Then, the stress distribution and displacement prediction of the 4 MARPEs and hyrax expander (model E) were evaluated via FEA: bone-borne (model A), bone-tooth-borne (model B), bone-mucous-borne (model C), bone-tooth-mucous-borne (model D). Monocortical microimplants perpendicular to the cortical bone on the coronal plane resulted in better expansion effects. Compared with a conventional hyrax expander, the orthopedic expansion of each of the 4 MARPEs was far larger, the parallelism was greater, and the posterior teeth tipping rate was lower. Among them, the expansion effects of models C and D were the best; the von Mises peak values on the surfaces of the microimplants were smaller than those of models A and B. This study may demonstrate that the 4 MARPEs obtained more advantageous orthopedic expansion effects than a hyrax expander. Models C and D obtained better biomechanical effects and had better primary stability. Overall, model D is the recommended expander for treating maxillary transverse deficiency because its structure acts like an implant guide and is beneficial for the accurate insertion of the microimplant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call