Abstract

Active magnetic bearings (AMBs) have achieved great advantages in the high-speed and high-power-density rotating machine. Various vibration control strategies based on the notch filter have been reported to reduce the rotor imbalance vibration. But, the study is still insufficient to determine why the vibration gets reduced. This paper addresses a concise and direct explanation of the effects of notch filter on the rotor imbalance vibration with AMBs. An analytic solution for the synchronous response of rotor imbalance is introduced using the simple planar rotor model and general notch filter method. Then, combined with practical matters, the amplifier of a heteropolar radial AMB is further specified to uncover the effect of motion induced voltage to rotor self-centering, as a comparison with the homopolar radial AMB. Since the developed motor is equipped with both types of radial AMBs, a detailed control design is exhibited based on the dynamics of rigid body motion. The traditional simplification of two-plane separate control is improved, and a centralized controller is constructed. The effects of the rotor imbalance vibration rejection are demonstrated by the simulation results and experiments in a 30-kW 60000-r/min permanent magnet motor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call