Abstract
The purpose of this study is to present a comparative study between Newtonian and non-Newtonian blood viscosity models for simulating the hemodynamic wall shear stress (WSS) of cerebral aneurysms. The non-Newtonian blood viscosity was modeled using the Carreau-Yasuda nonlinear model. Two realistic cerebral aneurysm models, derived from 3D angiography imaging, were studied and simulated via computational fluid dynamics solver based on finite volume method, with a pulsating sinusoidal waveform boundary conditions. The maximum wall shear stresses were found at the aneurysm’s neck and apex, the inlet arteriole recorded an average wall shear stress and as for the blebs and tips the wall shear stress values were remarkably low. The comparison indicated that non-Newtonian blood viscosity model predicted a lower range of WSS than of the Newtonian model, which provides more accuracy for simulating aneurysm hemodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.