Abstract

The objectives of this study were (1) to investigate the transporter inhibition activity of three nonionic surfactants on P-glycoprotein, the human intestinal peptide transporter, and the monocarboxylic acid transporter in Caco-2 cell monolayers, and (2) to evaluate the role of membrane fluidity and protein kinase C in surfactant-induced transporter inhibition. All three surfactants inhibited P-glycoprotein (P-gp). Over a range from 0 to 1 mM, Tween 80 and Cremophor EL increased apical-to-basolateral permeability (AP-BL) and decreased basolateral-to-apical (BL-AP) permeability of the P-gp substrate rhodamine 123. Vitamin E TPGS’s effect was equally large, but essentially only reduced the BL-AP permeability of rhodamine 123, and did so at a vitamin E TPGS concentration of only 0.025 mM. These P-gp inhibition effects would appear to be related to these excipients’ modulation of membrane fluidity, where Tween 80 and Cremophor EL fluidized cell lipid bilayers, while vitamin E TPGS rigidized lipid bilayers. However, among the three surfactants, only Tween 80 inhibited the peptide transporter, as measured by glycyl sarcosine permeability. Likewise, only Cremophor EL inhibited the monocarboxylic acid transporter, as measured by benzoic acid permeability. Nevertheless, at least one of these three surfactants inhibited each P-gp, the human intestinal peptide transporter, and the monocarboxylic acid transporter. A common functional feature of these three surfactants was their ability to modulate fluidity, although results indicate that even strong membrane fluidity modulation alone was not sufficient to reduce transporter activity. N-octyl glucoside, a nonionic surfactant that did not modulate membrane fluidity, did not affect transporter functioning. Protein kinase C inhibitors failed to affect rhodamine 123 and glycyl sarcosine permeability, suggesting protein kinase C inhibition was not the mechanism of transporter inhibition. These results suggest that surfactants can inhibit multiple transporters but that changes in membrane fluidity may not be a generalized mechanism to reduce transporter activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call