Abstract

Spherical and non-spherical colloidal silica size and shape were characterized and its effects on aluminum alloy nickel plated (Al-NiP) hard disk substrate during chemical mechanical polishing (CMP) was investigated. Non-spherical colloidal silica slurry shows significantly higher material removal rate (MRR) with higher coefficient of friction (CoF) when compared to spherical colloidal silica of similar size. CMP evaluations on non-spherical colloidal silica slurry particle size distribution (PSD) reveal that MRR can be further increased by using wider PSD. Conventional slurry for Al-NiP hard disk substrates which use alumina–silica composite slurry induces embedded alumina thermal asperities (TA) defects which can cause reliability failure at product level. CMP comparison between conventional alumina–silica slurry and non-spherical colloidal silica slurry shows substrates polished by using non-spherical colloidal silica slurry have no embedded TA defects, lower surface roughness and lower surface defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.