Abstract

AbstractThis paper presents a performance evaluation of non-axisymmetric casing grooves combined with airflow injection in a transonic axial compressor with NASA Rotor 37, using three-dimensional Reynolds-averaged Navier-Stokes equations with the k-ε turbulence model. An axisymmetric casing groove was divided circumferentially into 36 non-axisymmetric grooves. The numerical results for adiabatic efficiency and total pressure ratio were validated with experimental data. A parametric study for stall margin, stable range extension, peak adiabatic efficiency, and total pressure ratio at peak adiabatic efficiency of the compressor was performed using five parameters: the front and rear lengths, the height of the casing groove, the injection mass flow rate, and the injection angle. The non-axisymmetric casing grooves combined with injection improve greatly the stall margin and stable range extension of the transonic axial compressor, but reduce only slightly the peak adiabatic efficiency in all cases, compared to the results for a smooth casing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call