Abstract

Due to large footprints of remotely sensed microwave brightness temperatures, accuracy of microwave observations in areas of large surface heterogeneity has always been a technological challenge. Microwave observations in areas dominated by waterbodies typically exhibit observed brightness temperature several tens of kelvins lower than areas having no surface water. The non-linearity between brightness temperature and other geophysical quantities such as soil moisture makes the accuracy of microwave observations a critical element for accurate estimation of these quantities. In retrieving soil moisture estimates, an error of 1 K in remotely sensed microwave brightness temperatures results in about 0.5–1% error in volumetric soil moisture. Large uncertainties in the observed brightness temperatures make such observations unusable in areas of large brightness temperature contrast. In this article, we discuss a deconvolution method to improve accuracy using the overlap in the adjacent microwave observations. We have shown that the method results in improved accuracy of 40% in brightness temperature estimation in regions of high brightness temperature contrast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call