Abstract

BackgroundWith the development of modified electroshock therapy (MECT), it has become necessary to increase the electric quantity in order to achieve a good antidepressant effect, but this increase will lead to more serious learning and memory impairment. The purpose of this study was to investigate the intrinsic mechanism of cognitive impairment induced by high-energy electroconvulsive shock (MECS, an animal model of MECT).MethodsRats were randomly divided into 6 groups: control (C, n=6), M0, M60, M120, M180, and M240 groups (MECS at 0, 60, 120, 180, and 240 mC stimulation intensity after 80 mg/kg propofol, with 12 rats in each group). Their depression-like behavior and learning and memory ability were evaluated by sucrose preference test (SPT), open field test (OFT), and Morris water maze test (MWM). The expression of phospho-NMDA receptor 1 (GluN1), GluN2A, GluN2B, Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα), p-T305-CaMKII, and postsynaptic densities-95 (PSD-95) in hippocampus were detected by western blot. The co-expression of CaMKIIα and GluN2B subunit was detected by co-immunoprecipitation (CO-IP).ResultsThe chronic unpredictable mild stresses (CUMS) procedure successfully induced depression-like behavior in rats, which was improved in varying degrees after MECS. The results showed that the expression of GluN1, GluN2A, GluN2B, and PSD-95 decreased with the increase of charge, while p-T305-CaMKII increased, which led to the deterioration of learning and memory ability, but the expression change of CaMKIIα was not statistically significant.ConclusionsIncrease in the MECS charge adjusts the synaptic plasticity by changing the binding amount of CaMKIIα and its subunit GluN2B and the level of CaMKII autophosphorylation, thereby impairing learning and memory functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.