Abstract

Pre-pulse inhibition of the acoustic startle response is a model of reflex modification which is thought to reflect sensorimotor gating mechanisms and is sensitive to disruption by non-competitive N-methyl-D-aspartate (NMDA) antagonists such as phencyclidine. The effects of two competitive antagonists, 2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid (NPC 12626) (3–30 mg/kg) and cis-4-phosphonomethyl-2-piperidine-carboxylate (CGS 19755) (1–10 mg/kg), the non-competitive NMDA antagonist dizocilpine (0.5 mg/kg), and NMDA itself (1–30 mg/kg) were studied in the pre-pulse inhibition model. Rats were exposed to sessions in which 122 dB[A] startle-eliciting stimuli were presented either alone or preceded by weak 80 dB[A] prepulses with durations of 3, 10 and 30 ms, which under control conditions reduced the magnitude of the startle response. Neither NPC 12626 nor CGS 19755 produced disruption of pre-pulse inhibition as normally observed with phencyclidine-Iike drugs. NMDA also did not affect pre-pulse inhibition. As in previous experiments, dizocilpine produced a significant disruption of pre-pulse inhibition at all pre-pulse durations. These data suggest that actions at the phencyclidine binding site, and not the NMDA site, are responsible for the disruption of pre-pulse inhibition by phencyclidine-like drugs, and support reports of differences in the behavioral effects of competitive and noncompetitive NMDA antagonists. The effects of phencyclidine-like drugs on pre-pulse inhibition may represent a useful pharmacological model of schizophrenia-like cognitive deficits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call