Abstract
Nitrous acid (HONO) is formed both indirectly from the reaction of nitrogen dioxide (NO2) with water on indoor surfaces, and directly during combustion. This gaseous pollutant may be a previously unrecognized causal factor in assessments of nitrogen oxide exposure effects. The present study is the first attempt to evaluate exposure effects of HONO on the human airways and the mucous membranes of the eyes and nose. Fifteen healthy adult nonsmokers were exposed for 3.5 h in a double-blind, balanced protocol to clean air, 77, and 395 ppb HONO. Each exposure was preceded by a 1-h baseline measurement period, and exposures were separated by 1 wk. There was a 10-min exercise period during exposure. Effects measurements included assessment of bronchial reactivity, measurement of specific airway conductance, spirometry, acoustic rhinometry, nasal lavage, tear-fluid cytology, a CO2 eye-provocation test, evaluation of eye redness, and subjective sensations. Effects of HONO exposure on the eyes were found as exposure-related changes in tear-fluid cytology. In particular, the number of squamous cells increased by 20, 67, and 80% following exposure to clean air, 77, and 395 ppb HONO, respectively (p = 0.004). Possible indications of exposure effects on sensitivity to CO2 eye provocation and on specific airway conductance were also measured. For specific airway conductance there was an approximate 10% decrease in conductance following exercise in association with HONO exposure, compared with a 2% decrease with clean air (p = 0.038).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory and Critical Care Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.