Abstract

We studied the effects of water-soluble cationic dinitrosyl iron complexes with thiocarbamide and its aliphatic derivatives, new synthetic analogs of natural NO donors, active centers of nitrosyl [1Fe-2S]proteins, on activities of Ca2+-ATPase of sarcoplasmic reticulum and cGMP phosphodiesterase. Nitrosyl iron complexes [Fe(C3N2H8S)Cl(NO)2]0[Fe(NO)2(C3N2H8S)2]+Cl- (I), [Fe(SC(N(CH3)2)2(NO)2]Cl (II), [Fe(SC(NH2)2)2(NO)2Cl×H2O (III), and [Fe(SC(NH2)2)2(NO)2]2SO4×H2O (IV) in a concentration of 10-4 M completely inhibited the transporting and hydrolytic functions of Ca2+-ATPase. In a concentration of 10-5 M, they inhibited active Ca2+ transport by 57±6, 75±8, 80±8, and 85±9% and ATP hydrolysis by 0, 40±4, 48±5, and 38±4%, respectively. Complex II reversibly and noncompetitively inhibited the hydrolytic function of Ca2+-ATPase (Ki=1.7×10-6 M). All the studied iron-sulphur complexes in a concentration of 10-4 M inhibited cGMP phosphodiesterase function. These data suggest that the studied complexes can exhibit antimetastatic, antiaggregation, vasodilatatory, and antihypertensive activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call