Abstract

Nitrous oxide (N2O) emissions from cultivated soils correlate positively with the amount of N-fertilizer applied, but a large proportion of the annual N2O emission occurs outside the cropping season, potentially blurring this correlation. We measured the effect of split-N application (total N addition varying from 0 to 220 kg N ha−1) on N2O emissions in a spring wheat plot trial in SE Norway from the time of split-N application until harvest, and during the following winter and spring thaw period. N2O emissions were largest in the two highest N-levels, whereas yield-scaled emission (N2O intensity) was highest in the 0 N treatment. Nitrogen yield increased by 23% when adding 80 kg N ha−1 compared to adding 40 kg N ha−1 as split application, while corresponding N2O emissions were reduced by 16%. No differences in measured emissions between the N-fertilization levels were observed during the winter period or during spring thaw. Measurements of soil air composition below the snow pack revealed that N2O production continued throughout winter as the concentration in the soil air increased from 0.37 to 30.0 µL L−1 N2O over the 3 months period with continuous snow cover. However, only 7–28% of the N2O emitted during spring thaw could be ascribed to accumulated N2O, indicating de novo production of N2O in the thawing soil. The direct effect of split-N fertilizer rate on N2O emissions in sub-boreal cereal cropping was limited to the first 15–21 days after N-addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call