Abstract

The performance of silicon carbide (SiC)-based metal-oxide-semiconductor field-effect transistors (MOSFETs) is greatly enhanced by a post-oxidation anneal in NO. These anneals greatly improve effective channel mobilities and substantially decrease interface trap densities. In this work, we investigate the effect of NO anneals on the interface density of states through density functional theory (DFT) calculations and electrically detected magnetic resonance (EDMR) measurements. EDMR measurements on 4H-silicon carbide (4H-SiC) MOSFETs indicate that NO annealing substantially reduces the density of near interface SiC silicon vacancy centers: it results in a 30-fold reduction in the EDMR amplitude. The anneal also alters post-NO anneal resonance line shapes significantly. EDMR measurements exclusively sensitive to interface traps with near midgap energy levels have line shapes relatively unaffected by NO anneals, whereas the measurements sensitive to defects with energy levels more broadly distributed in the 4H-SiC bandgap are significantly altered by the anneals. Using DFT, we show that the observed change in EDMR linewidth and the correlation with energy levels can be explained by nitrogen atoms introduced by the NO annealing substituting into nearby carbon sites of silicon vacancy defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.