Abstract

Hydrogen embrittlement of AlSl type 316, 321 and 347 stainless steels with nitrogen alloying has been studied by a tensile test through cathodic charging. The results show that addition of nitrogen improved resistance to hydrogen cracking regardless of the failure mode. Fracture surfaces of cathodically charged steels showed intergranular brittle zones on each side of the fracture surfaces. AlSl type 316 with nitrogen alloying stainless steel is more resistant to hydrogen embrittlement than AlSl type 321 with nitrogen alloying steel, whereas AlSl type 347 with nitrogen alloying steel is susceptible to hydrogen embrittlement. Nitrogen alloying of stainless steel increased the mechanical properties in hydrogen environments by increasing the stability of austenite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.