Abstract

After the nuclear accident in Fukushima Prefecture, Japan, in 2011, 137 Caesium (Cs) contaminated nearby agricultural regions. Studies in these rice fields found that low K and high N fertilizer application enhanced Cs uptake in rice shoots. However, the influence of root and soil physics on these findings, as well as precise nutrient levels, remain to be clarified. We sought to analyse these relationships utilizing hydroponically grown rice plants. The rice plants were subjected to various concentrations of K and N nutrient solutions. We measured Cs allocation within the plants and performed transcript analyses using root tissues. Under low-K conditions, low-N plants accumulated less Cs in shoots and more in roots when compared to control-N conditions, even though overall Cs uptake remained unchanged. Expression analyses of root mRNAs showed that low-N plants accumulated reduced levels of OsAKT1 mRNA, encoding a K transporter. We also found a negative relationship between shoot Cs and K status in control-N but not in low-N conditions. Our results suggest that the application of N shifts Cs from roots into the shoots and that OsAKT1 in root vascular tissues influences Cs allocation. In practice, fine tuning N/K application and targeted breeding of K transporters might mitigate Cs contamination in rice plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call