Abstract
Nitrogen partitioning among proteins in chloroplasts and mitochondria was examined in pea (Pisum sativum L.) and wheat (Triticum aestivum L.) grown hydroponically with different nitrogen concentrations. In pea leaves, chloroplast nitrogen accounted for 75 to 80% of total leaf nitrogen. We routinely found that 8% of total ribulose-1,5-bisphosphate carboxylase/oxygenase adhered to thylakoids during preparation and could be removed with Triton X-100. With this precaution, the ratio of stroma nitrogen increased from 53 to 61% of total leaf nitrogen in response to the nitrogen supply, but thylakoid nitrogen remained almost constant around 20% of total. The changes in the activities of the stromal enzymes and electron transport in response to the nitrogen supply reflected the nitrogen partitioning into stroma and thylakoids. On the other hand, nitrogen partitioning into mitochondria was appreciably smaller than that in chloroplasts, and the ratio of nitrogen allocated to mitochondria decreased with increasing leaf-nitrogen content, ranging from 7 to 4% of total leaf nitrogen. The ratio of mitochondrial respiratory enzyme activities to leaf-nitrogen content also decreased with increasing leaf-nitrogen content. These differences in nitrogen partitioning between chloroplasts and mitochondria were reflected in differences in the rates of photosynthesis and dark respiration in wheat leaves measured with an open gas-exchange system. The response of photosynthesis to nitrogen supply was much greater than that of dark respiration, and the CO(2) compensation point decreased with increasing leaf-nitrogen content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.