Abstract
Removal of toxic pollutants from wastewater is equally important for aquatic ecology, human health, and sustainable societal development.Nitrogen-doped biochar (N-BC) is a novel carbon-rich material that can effectively remove various pollutants by the high-temperature pyrolysis of waste biomass. In the current work, the physicochemical properties of endogenous and exogenous biochar (BC) including differences in porosity, specific surface area, elemental composition, and active functional groups were compared and summarized. Subsequently, the application of N-BC to degrade pollutants in wastewater was reviewed according to different surface morphological characteristics of endogenous and exogenous BC. To better understand the interactions between N-BC and pollutants, the interaction mechanism was analyzed, especially by adsorption, surface redox, and catalytic reaction. Finally, the current technical bottlenecks in the field of sewage treatment were pointed out and future research directions were proposed. The work can serve as a valuable reference for high-value conversion of biomass and targeted preparation of N-BC to maximize environmental, social, and economic benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.