Abstract
BackgroundPolymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries. Its monomer, L-malic acid, is also a potential C4 platform chemical. However, little is known about the mechanism of PMA biosynthesis in the yeast-like fungus, Aureobasidium pullulans. In this study, the effects of different nitrogen concentration on cell growth and PMA biosynthesis were investigated via comparative transcriptomics and proteomics analyses, and a related signaling pathway was also evaluated.ResultsA high final PMA titer of 44.00 ± 3.65 g/L (49.9 ± 4.14 g/L of malic acid after hydrolysis) was achieved in a 5-L fermentor under low nitrogen concentration (2 g/L of NH4NO3), which was 18.3 % higher yield than that obtained under high nitrogen concentration (10 g/L of NH4NO3). Comparative transcriptomics profiling revealed that a set of genes, related to the ribosome, ribosome biogenesis, proteasome, and nitrogen metabolism, were significantly up- or down-regulated under nitrogen sufficient conditions, which could be regulated by the TOR signaling pathway. Fourteen protein spots were identified via proteomics analysis, and were found to be associated with cell division and growth, energy metabolism, and the glycolytic pathway. qRT-PCR further confirmed that the expression levels of key genes involved in the PMA biosynthetic pathway (GLK, CS, FUM, DAT, and MCL) and the TOR signaling pathway (GS, TOR1, Tap42, and Gat1) were upregulated due to nitrogen limitation. Under rapamycin stress, PMA biosynthesis was obviously inhibited in a dose-dependent manner, and the transcription levels of TOR1, MCL, and DAT were also downregulated.ConclusionsThe level of nitrogen could regulate cell growth and PMA biosynthesis. Low concentration of nitrogen was beneficial for PMA biosynthesis, which could upregulate the expression of key genes involved in the PMA biosynthesis pathway. Cell growth and PMA biosynthesis might be mediated by the TOR signaling pathway in response to nitrogen. This study will help us to deeply understand the molecular mechanisms of PMA biosynthesis, and to develop an effective process for the production of PMA and malic acid chemicals.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-016-0547-y) contains supplementary material, which is available to authorized users.
Highlights
Polymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries
Investigation of nitrogen availability on PMA biosynthesis In general, the utilization of a nitrogen source is essential to cell growth, the type of nitrogen source affects PMA biosynthesis [15]
The effects of different NH4NO3 concentrations on cell growth and PMA biosynthesis were investigated in shake flasks
Summary
Polymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries. Little is known about the mechanism of PMA biosynthesis in the yeast-like fungus, Aureobasidium pullulans. Polymalic acid (PMA) is a novel polyester polymer composed of L-malic acid as the sole monomer [1, 2]. Aureobasidium spp. are ubiquitous species that have evolved an extraordinary tolerance for a broad range of ecological conditions and can be isolated from pollen, leaves, and even antarctic soils, and deep sea water [6]. It is regarded as a polyextremotolerant organism that can survive in hypersaline, acidic and basic, cold and oligotrophic conditions. Due to its inherent universality, A. pullulans can produce a variety of metabolites, such as PMA, pullulan, melanin, amylase, proteinase, xylanase, liamocins, etc. [7, 8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.