Abstract

The effect of available nitrogen N ((NH 4) 2S0 4) amendments on various microbial variables in three different layers (OhLn, OhLv, OhLf) of a Mediterranean litter profile under an evergreen oak forest ( Quercus ilex L.) were studied. Since Mediterranean litters are generally N limiting, the goal of the study was to understand how low (0.1 and 1%) and high (5 and 10%) N amendments impact specific biological variables such as hyphal length, community-level-catabolic-profiles (CLCPs) in ECO and FF Biolog™ plates, basal respiration, enzymatic activities (i.e. alkaline phosphatases (AlP), laccases, peroxidases and cellulases), and laccase and cellulase isoforms from three different litter layers. Results indicated that the effects of N amendments occurred over very short incubation time (3 d), and varied depending on N concentration and litter organic matter (OM) quality (i.e. depth). Thus, it appeared that the more active layer was the intermediate (OhLv) layer, which probably contained the most labile and available C pools. As a consequence, OhLv was also the layer showing globally the more intensive microbial responses following low N amendments. Indeed, in this layer, low N supplies caused several marked increases in enzymes activities (i.e. laccases, cellulases and alkaline phosphatases), hyphal length and isoenzyme patterns, suggesting a microbial reallocation of C to biomass and enzyme production. On the contrary, high N supplies resulted in adverse effects on almost all the variables, suggesting repression or cytotoxic phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.