Abstract

In order to explore the role of nitric oxide (NO) in the control of fetoplacental vascular tone in normal pregnancy we have examined the effects of NO donors on uteroplacental arteries pre-contracted with the vasoconstrictor endothelin-1 (ET-1) or serotonin (5-HT). We have furthermore examined the effects of guanylate cyclase inhibitors on the NO-induced relaxation. Segments of placental arteries (n=102) obtained from 39 placentas immediately after delivery were mounted in organ baths and superfused with Krebs-Ringer solution at 37 degrees C. The vessel segments were exposed to drugs for various intervals and the tension was recorded isometrically and registered on a polygraph. Cyclic guanosine monophosphate (cGMP) analysis was performed after extraction of vessel segments using a specific radioimmunoassay. The placental artery segments responded to ET-1 and 5-HT with a dose-dependent vasoconstriction. After pre-contraction with ET-1 (10(-7) M) or 5-HT (10(-6) M), the vessels relaxed in response to the NO donors glyceryltrinitrate (GTN) (10(-6) M) and S-nitroso-N-acetyl-penicillamine (SNAP) (10(-5) M). In the presence of the non-specific guanylate cyclase inhibitor LY 83583 (10(-6) M), the vessels responded with a small contraction. In the presence of the soluble guanylate cyclase (sGC) inhibitor 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) the non-treated vessels responded with a relaxation. 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one gave no obvious relaxation in pre-contracted vessels. Addition of 8-Br-cGMP, the cell-permeant analogue of cGMP, with or without pre-contraction had no effect on the vessels. Cyclic guanosine monophosphate analysis showed that GTN treatment caused an increase in cGMP after 12 min. Our results indicate that NO acts as a vasodilator in placental vessels. The cGMP-dependent mechanisms may be involved in NO-induced relaxation but cGMP-independent mechanisms appear also to be involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.