Abstract
The effects of niobium addition up to 0.11wt% on the microstructure and tensile properties of as-cast ductile iron (ACDI) were investigated. Metallographic analyses by both optical microscopy (OM) and scanning electron microscopy (SEM) indicated that niobium (Nb) promoted the formation of pearlite, reduced pearlite lamellar spacing and decreased the extent of graphitization taking place in the Nb-alloyed ACDI. The nodularity and nodule counts of graphite changed insignificantly when the Nb content was less than 0.08wt% in the ACDI. The analysis of precipitates by transmission electron microscopy (TEM) revealed that nano and micro sized (Nb, Ti)C carbides acted as nucleation site for graphites, and promoted the formation of large graphite nodules with low roundnesses as Nb content rose above 0.08wt%. The results of tensile testing showed that the yield strength, ultimate tensile strength and elongation of the ACDI with 0.08wt% Nb increased by 12.1%, 11.2% and 14.3% over those of the Nb-free ACDI, respectively. The optimum values of the yield strength, tensile strength and elongation of the Nb-alloyed ACDI were found to be 418MPa, 746.0MPa and 8.0%, respectively, at the Nb content of 0.08wt%. The high strain hardening rates of the Nb-containing ACDIs implied that they were capable of spontaneously strengthening itself increasingly to a large extent, in response to a slight plastic deformation after yielding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.